The Riesz basis property of a Timoshenko beam with boundary feedback and application
نویسنده
چکیده
The Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback is studied. Firstly, two auxiliary operators are introduced, and the Riesz basis property of their eigenvector systems is proved. This property is used to show that the generalized eigenvector system of a Timoshenko beam with some linear boundary feedback forms a Riesz basis in the corresponding state space. Finally, it is concluded that the closed loop system exhibits exponential stability.
منابع مشابه
Riesz basis property of the generalized eigenvector system of a Timoshenko beam
The Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback controls applied to two ends is studied in the present paper. The spectral property of the operator A determined by the closed loop system is investigated. It is shown that operator A has compact resolvent and generates a C0 semigroup, and its spectrum consists of two branches and has two ...
متن کاملRiesz Basis Property of Timoshenko Beams with Boundary Feedback Control
A Timoshenko beam equation with boundary feedback control is considered. By an abstract result on the Riesz basis generation for the discrete operators in the Hilbert spaces, we show that the closed-loop system is a Riesz system, that is, the sequence of generalized eigenvectors of the closed-loop system forms a Riesz basis in the state Hilbert space. 1. Introduction. The boundary feedback stab...
متن کاملRitz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity
Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...
متن کاملRiesz Basis Property and Exponential Stability of Controlled Euler--Bernoulli Beam Equations with Variable Coefficients
This paper studies the basis property and the stability of a distributed system described by a nonuniform Euler–Bernoulli beam equation under linear boundary feedback control. It is shown that there is a sequence of generalized eigenfunctions of the system, which forms a Riesz basis for the state Hilbert space. The asymptotic distribution of eigenvalues, the spectrumdetermined growth condition,...
متن کاملVariational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions
In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...
متن کامل